[1]王 丽,陈 震*,刘奇龙.应用改进的Levenberg-Marquardt方法求解一类多线性系统[J].四川师范大学学报(自然科学版),2020,43(01):39-44.[doi:10.3969/j.issn.1001-8395.2020.01.005]
 WANG Li,CHEN Zhen,LIU Qilong.Solving a Class of Multilinear Systems by Applying the Improved Levenberg-Marquardt Method[J].Journal of SichuanNormal University,2020,43(01):39-44.[doi:10.3969/j.issn.1001-8395.2020.01.005]
点击复制

应用改进的Levenberg-Marquardt方法求解一类多线性系统()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
43卷
期数:
2020年01期
页码:
39-44
栏目:
基础理论
出版日期:
2019-12-04

文章信息/Info

Title:
Solving a Class of Multilinear Systems by Applying the Improved Levenberg-Marquardt Method
文章编号:
1001-8395(2020)01-0039-06
作者:
王 丽 陈 震* 刘奇龙
贵州师范大学 数学科学学院, 贵州 贵阳 550025
Author(s):
WANG Li CHEN Zhen LIU Qilong
School of Mathematical Sciences, Guizhou Normal University, Guiyang 550025, Guizhou
关键词:
张量 改进的LM方法 迭代参数 收敛性分析
Keywords:
tensor improved LM method iterative parameter convergence analysis
分类号:
O151.21
DOI:
10.3969/j.issn.1001-8395.2020.01.005
文献标志码:
A
摘要:
研究一类多线性系统的数值求解,该系统在工程和科学计算中具有广泛的应用背景.应用改进的Levenberg-Marquardt(LM)方法,讨论这类多线性系统的数值算法,并证明该方法在局部误差界条件下的全局收敛性和局部二次收敛性,最后通过数值实验检验算法的有效性.
Abstract:
This paper is concerned with solving some structured multilinear systems, which have wide application background in engineering and scientific computing. Based on the improved Levenberg-Marquardt(LM)method, the numerical algorithm of this class of multilinear systems is discussed. Furthermore, we prove its global convergence and local quadratic convergence of this method under the condition of local error bounds. Finally, numerical experiments are presented to show availabities of the approaches.

参考文献/References:

[1] LI X T, NG M. Solving sparse non-negative tensor equations:algorithms and applications[J]. Front Math China,2015,10(3):649-680.
[2] DING W Y, WEI Y M. Solving multi-linear systems with M-tensors[J]. J Sci Comput,2016,68(2):689-715.
[3] LUO Z Y, QI L Q, XIU N H. The sparsest solutions to Z-tensor complementarity problems[J]. Optim Lett,2017,11(3):471-482.
[4] HAN L X. A homotopy method for solving multilinear systems with M-tensors[J]. Appl Math Lett,2017,69:49-54.
[5] HE H, LING C, QI L Q, et al. A globally and quadratically convergent algorithm for solving ultilinear systems with M-tensors[J]. J Sci Comput,2018,2:1-24.
[6] LI D H, XIE S L, XU H R. Splitting methods for tensor equations[J]. Numer Linear Algebra,2017,24(5):e2102.
[7] LIU D D, LI W, VONG S W. The tensor splitting with application to solve multi-linear systems[J]. J Comput Appl Math,2018,330:75-94.
[8] LYU C Q, MA C F. A Levenberg-Marquardt method for solving semi-symmetric tensor equations[J]. J Comput Appl Math,2018,332:13-25.
[9] LI Z B, DAI Y H, GAO H. Alternating projection method for a class of tensor equations[J]. J Comput Appl Math,2019,346:490-504.
[10] LEVENBERG K. A method for the solution of certain non-linear problems in least squares[J]. Q Appl Math,1944,2:164-168.
[11] MARQUARDT D W. An algorithm for least-squares estimation of nonlinear parameters[J]. SIAM J Appl Math,1963,11(2):431-441.
[12] YAMASHITA N, FUKUSHIMA M. On the Rate of Convergence of the Levenberg-Marquardt Method[M].Vienna:Springer-Verlag,2001,15:239-249
[13] FAN J Y, YUAN Y X. On the convergence of a new Levenberg-Marquardt method[R]. Thechnical Report,AMSS. Beijing:Chinese Academic of Sciences,2001:1-11.
[14] FAN J Y. A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations[J]. Comput Optim Appl,2003,21(5):625-636.
[15] POWELL M J D. Convergence Properties of a Class of Minimization Algorithms[M]. MANGASARIAN O L, MEYER R R, ROBISON S M, eds. Nonlinear Programming. New York:Academic,1975:1-27.
[16] BADER B W, KOLDA T G. MATLAB Tensor Toolbox Version 2.6[EB/OL]. http://www.Sandia.Gov/~tgkolda/Tensor Toolbox/index-2.6.html.

相似文献/References:

[1]何 军,刘衍民.张量广义特征值的新包含域[J].四川师范大学学报(自然科学版),2019,42(02):224.[doi:10.3969/j.issn.1001-8395.2019.02.013]
 HE Jun,LIU Yanmin.New Inclusion Sets for the Generalized Tensor Eigenvalue Problem[J].Journal of SichuanNormal University,2019,42(01):224.[doi:10.3969/j.issn.1001-8395.2019.02.013]
[2]桑彩丽,赵建兴*.张量E-特征值包含集及其应用[J].四川师范大学学报(自然科学版),2019,42(04):485.[doi:10.3969/j.issn.1001-8395.2019.04.008]
 SANG Caili,ZHAO Jianxing.E-eigenvalue Inclusion Sets for Tensors and Their Applications[J].Journal of SichuanNormal University,2019,42(01):485.[doi:10.3969/j.issn.1001-8395.2019.04.008]
[3]何 军,唐 兰,刘衍民.张量Z-特征值的新包含域定理[J].四川师范大学学报(自然科学版),2019,42(42卷):799.[doi:10.3969/j.issn.1001-8395.2019.06.014]
 HE Jun,TANG Lan,LIU Yanmin.A New Z-eigenvalue Inclusion Theorem for Tensors[J].Journal of SichuanNormal University,2019,42(01):799.[doi:10.3969/j.issn.1001-8395.2019.06.014]

备注/Memo

备注/Memo:
收稿日期:2018-10-09 接受日期:2018-11-13 基金项目:国家自然科学基金(11671105)和贵州省教育厅自然科学研究项目(黔教合KY字[2015]352号) *通信作者简介:陈 震(1979—),男,教授,主要从事数值代数的研究,E-mail:zchen@gznu.edu.cn
更新日期/Last Update: 2019-12-04