[1]王和香,胡卫敏*.一类分数阶p-Laplacian奇异边值问题解的存在性[J].四川师范大学学报(自然科学版),2020,43(01):50-55.[doi:10.3969/j.issn.1001-8395.2020.01.007]
 WANG Hexiang,HU Weimin.Existence of Solutions to Singular Boundary Value Problems with p-Laplacian Operators[J].Journal of SichuanNormal University,2020,43(01):50-55.[doi:10.3969/j.issn.1001-8395.2020.01.007]
点击复制

一类分数阶p-Laplacian奇异边值问题解的存在性()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
43卷
期数:
2020年01期
页码:
50-55
栏目:
基础理论
出版日期:
2019-12-04

文章信息/Info

Title:
Existence of Solutions to Singular Boundary Value Problems with p-Laplacian Operators
文章编号:
1001-8395(2020)01-0050-06
作者:
王和香1 胡卫敏2*
1. 喀什大学 数学与统计学院, 新疆 喀什 844006; 2. 伊犁师范学院 数学与统计学院, 新疆 伊宁 835000
Author(s):
WANG Hexiang1 HU Weimin2
1. School of Mathematics and Statistic, Kashgar University, Kashgar 844006, Xinjiang; 2. School of Mathematics and Statistic, Yili Normal University, Yining 835000, Xinjiang
关键词:
分数阶边值问题 不动点定理 多重正解
Keywords:
fractional boundary value problems fixed point theorem multiple positive solutions
分类号:
O175
DOI:
10.3969/j.issn.1001-8395.2020.01.007
文献标志码:
A
摘要:
利用锥上的不动点定理,研究一类具p-Laplacian算子的奇异边值问题,得到多重正解的存在性,并举例验证所得结果的有效性.
Abstract:
Taking advantage of fixed point theorem on cines, we study one class of multi-positive solutions to the singular boundary value problem with p-Laplacian operators, obtain the existence of multiplicity of positive solutions and examine the efficiency for the results via examples.

参考文献/References:

[1] LIANG S H, SHI S Y. Existence of multiple positive solutions for m-point fractional boundary value problemswith p-Laplacian operator on infinite interval[J]. J Appl Math Comput,2012,38(1/2):687-707.
[2] ZHANG X Q, ZHONG Q Y. Multiple positive solutions for nonlocal boundary value problems of singular fractional differential equations[J]. Boundary Value Problems,2016,2016(1):65-76.
[3] ZHONG Q Y, ZHANG X Q. Positive solution for higher-order singular infinite-point fractional differential equation with p-Laplacian[J]. Advances in Difference Equations,2016,2016(1):11-22.
[4] SU X W. Existence of positive solutions for boundary value problem of nonlinear fractional differential equations[J]. Appl Math J Chinese Univ Ser,1993,B22(3):291-298.
[5] GUO D J, LAKSHMIKANTHAM V. Nonlinear Problems in Abstract Cones[M]. New York:Academic Press,1988.
[6] KILBAS A A, SRIVASTAVE H H, TRUJILLO J J. Theory and Applications of Fractional Differential Equations[M]. Amsterdam:Elsevier Science B V,2006.
[7] 王和香,胡卫敏. 一类具p-Laplacian算子的无穷多点边值问题正解的存在性[J]. 四川师范大学学报(自然科学版),2016,39(5):691-695.
[8] QIAO Y, ZHOU Z F. Existence of positive solutions of singular fractional differential equations with infinite-point boundary conditions[J]. Advances in Difference Equations,2017,2017(1):8-17.
[9] GU C Y, ZHENG F X, ZHONG S M. Existence and uniqueness of positive solution for nonlinear fractional differential equation boundary value problem[J]. 重庆师范大学学报(自然科学版),2015,32(7):96-101.
[10] 王和香,胡卫敏. 一类具p-laplacian算子的含积分边界条件的分数阶微分方程边值问题解的存在性[J]. 数学的实践与认识,2016,46(16):228-236.
[11] HAN Z L, LU H L, ZHANG C. Positive solutions for eigenvalue problems of fractional differential equation with generalized p-Laplacian[J]. Appl Math Comput,2015,257:526-536.
[12] 高婷,韩晓玲. 一类奇异三阶m点边值问题正解的存在性[J]. 四川师范大学学报(自然科学版),2015,38(5):648-655.
[13] 张爱华,胡卫敏. 非线性分数阶微分方程边值问题解的存在性和唯一性[J]. 东北师大学报(自然科学版),2015,47(4):36-41.
[14] GUO D J. Nonlinear Integral Equations[M]. 济南:山东科技出版社,1987.
[15] 刘刚,胡卫敏,张稳根. 非线性分数阶微分方程边值问题多重正解的存在性[J]. 云南大学学报(自然科学版),2012,34(3):258-264.

相似文献/References:

[1]张红玲,陈滋利.抽象凸空间的广义向量平衡问题[J].四川师范大学学报(自然科学版),2010,(04):447.
 ZHANG Hong ling,CHEN Zi li.Generalized Vector Equilibrium Problems in Abstract Convex Spaces[J].Journal of SichuanNormal University,2010,(01):447.
[2]辛邦颖.变系数多项式型迭代方程单调递增解和凸解[J].四川师范大学学报(自然科学版),2010,(04):474.
 XIN Bang ying.Increasing Solutions and Convex Solutions of the Polynomiallike Iterative Equation with Variable Coefficients[J].Journal of SichuanNormal University,2010,(01):474.
[3]王颖,施军.时间尺度上三点边值问题多个正解的存在性[J].四川师范大学学报(自然科学版),2011,(05):672.
 WANG Ying,SHI Jun.The Existence of Multiple Positive Solutions of ThreePoint Boundary Value Problem on Time Scales[J].Journal of SichuanNormal University,2011,(01):672.
[4]刘春晗,李娜,王鑫.局部凸拓扑空间中凝聚映象的不动点定理[J].四川师范大学学报(自然科学版),2012,(05):625.
 LIU Chun han,LI Na,WANG Xin.Fixed Point Theorems of Condensing Operator in Locally Convex Topological Vector Spaces[J].Journal of SichuanNormal University,2012,(01):625.
[5]杨丹丹.分数阶微分包含三点边值问题解的存在性[J].四川师范大学学报(自然科学版),2013,(06):881.
 YANG Dandan.Existence of Solutions for Fractionalorder Differential Inclusion with Treepoint Boundary Value Problems[J].Journal of SichuanNormal University,2013,(01):881.
[6]丁协平.拓扑空间内有上下界的拟平衡问题(英文)[J].四川师范大学学报(自然科学版),2004,(06):551.
 DING Xie-ping(College of Mathematics and Software Science,Sichuan Normal University,Chengdu 00,et al.[J].Journal of SichuanNormal University,2004,(01):551.
[7].四川师范大学学报(自然科学版)2005年1~6期总目次[J].四川师范大学学报(自然科学版),2005,(06):141.
[8]丁协平.L-凸空间内的连续选择定理和不动点定理及应用(英文)[J].四川师范大学学报(自然科学版),2001,(06):549.
 DING Xie ping (Institute of Mathematics and Software Science,Sichuan Normal University,Chengdu 00,et al.[J].Journal of SichuanNormal University,2001,(01):549.
[9]周密,何诣然.广义隐拟向量变分不等式解存在性问题[J].四川师范大学学报(自然科学版),2006,(01):53.
 ZHOU Mi,HE Yi-ran(College of Mathematics and Software Science,Sichuan Normal University,et al.[J].Journal of SichuanNormal University,2006,(01):53.
[10].四川师范大学学报(自然科学版)2006年1-6期总目次[J].四川师范大学学报(自然科学版),2006,(06):759.

备注/Memo

备注/Memo:
收稿日期:2018-05-04 接受日期:2018-09-11 基金项目: 新疆高校科研计划重点课题(XJEDU2014I040) *通信作者简介:胡卫敏(1968—),男,教授,主要从事微分方程理论与应用的研究,E-mail:Hwm680702@163.com
更新日期/Last Update: 2019-12-04