[1]李少云,徐会作,钱伟茂.Sándor-Yang平均关于几何和二次平均组合的确界[J].四川师范大学学报(自然科学版),2020,43(01):61-67.[doi:10.3969/j.issn.1001-8395.2020.01.009]
 LI Shaoyun,XU Huizuo,QIAN Weimao.Sharp Bounds for the Sándor-Yang Means in Terms of Geometric and Quadratic Means[J].Journal of SichuanNormal University,2020,43(01):61-67.[doi:10.3969/j.issn.1001-8395.2020.01.009]
点击复制

Sándor-Yang平均关于几何和二次平均组合的确界()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
43卷
期数:
2020年01期
页码:
61-67
栏目:
基础理论
出版日期:
2019-12-04

文章信息/Info

Title:
Sharp Bounds for the Sándor-Yang Means in Terms of Geometric and Quadratic Means
文章编号:
1001-8395(2020)01-0061-07
作者:
李少云1 徐会作12 钱伟茂3
1. 温州广播电视大学 教师教学发展中心, 浙江 温州 325013; 2. 温州广播电视大学 终身教育指导中心, 浙江 温州 325013; 3. 湖州职业技术学院 继续教育学院, 浙江 湖州 313000
Author(s):
LI Shaoyun1 XU Huizuo12 QIAN Weimao3
1. Teachers Teching Development Center, Wenzhou Broadcast and TV University, Wenzhou 325013, Zhejiang; 2. Lifelong Education Guidance Center, Wenzhou Broadcast and TV University, Wenzhou 325013, Zhejiang; 3. School of Continuing Education, Huzhou Vocati
关键词:
Sándor-Yang平均 几何平均 二次平均
Keywords:
Sándor-Yang mean geometric mean quadratic mean
分类号:
O178
DOI:
10.3969/j.issn.1001-8395.2020.01.009
文献标志码:
A
摘要:
研究几何平均和二次平均的凸组合(或特殊组合)与Sándor-Yang平均的序关系.应用实分析的方法,发现Sándor-Yang平均关于几何平均和二次平均凸组合(或特殊组合)的4个双向精确不等式.
Abstract:
The order relations of convex combinations(or special combinations)of geometric mean G(a,b) and quadratic mean Q(a,b) for two Sándor-Yang means RGQ(a,b) and RQG(a,b) and e studied. By using real analysis, four optimal double inequalities with convex combinations(or special combinations)of geometric and quadratic means for Sándor-Yang mean are found.

参考文献/References:

[1] NEUMAN E, SNDOR J. On the Schwab-Borchardt mean[J]. Math Pannon,2003,14(2):253-266.
[2] NEUMAN E, SNDOR J. On the Schwab-Borchardt meanⅡ[J]. Math Pannon,2006,17(1):49-59.
[3] SEIFFERT H J. Problem 887[J]. Nieuw Arch Wisk,1993,1993(11):176.
[4] YANG Z H, WU L M, CHU Y M. Optimal power mean bounds for Yang mean[J/OL]. J Inequal Appl,2014,DOI:https://doi.org/10.1186/1029-242X-2014-401.
[5] LI J F, YANG Z H, CHU Y M. Optimal power mean bounds for the second Yang mean[J/OL]. J Inequal Appl,2016,DOI:https://doi.org/10.1186/s13660-016-0970-y.
[6] QIAN W M, CHU Y M. Best possible bounds for Yang mean using generalized logarithmic mean[J/OL]. Math Probl Eng,2016,DOI:https://doi.org/10.1155/2016/8901258.
[7] QIAN W M, CHU Y M, ZHANG X H. Sharp one-parameter mean bounds for Yang mean[J/OL]. Math Probl Eng,2016,DOI:http://doi.org/10.1155/2016/1579468.
[8] BULLEM P S, MITRINOVI('overC)D S, VASI('overC)P M. Means and Their Inequalities[M]. Dordrecht:Springer,1988.
[9] HÖASTÖ P A. Optimal inequalities between Seiffert's mean and power means[J]. Math Inequal Appl,2004,7(1):47-53.
[10] COSTIN I, TOADER G. Optimal evaluations of some Seiffert-type means by power means[J]. Appl Math Comput, 2013,219(9):4745-4754.
[11] LI Y M, WANG M K, CHU Y M. Sharp power mean bounds for Seiffert mean[J]. Appl Math J Chinese Univ,2014,B29(1):101-107.
[12] YANG Z H. Estimates for Neuman-Sándor mean by power means and their relative errors[J]. J Math Inequal,2013,7(4):711-726.
[13] YANG Z H. Three families of two-parameter means constructed by trigonometric functions[J/OL]. J Inequal Appl,2013,DOI:https://doi.org/10.1186/1029-242X-2013-541.
[14] NEUMAN E. On a new family of bivariate means[J]. J Math Inequal,2017,11(3):673-681.
[15] YANG Z H, JIANG Y L, SONG Y Q, et al. Sharp inequalities for trigonometric functions[J/OL]. Abstr Appl Anal,2014,DOI:https://doi.org/10.1155/2014/601839.
[16] YANG Z H, CHU Y M. Optimal evaluations for the Sándor-Yang mean by power mean[J]. Math Inequal Appl,2016,19(3):1031-1038.
[17] ZHAO T H, QIAN W M,SONG Y Q. Optimal bounds for two Sándor-type means in terms of power means[J/OL]. J Inequal Appl,2016,DOI:https://doi.org/10.1186/s13660-016-0989-0.
[18] YANG Y Y, QIAN W M. Two optimal inequalities related to the Sándor -Yang type mean and one-parameter mean[J]. Communications in Mathematical Research, 2016,32(4):352-358.
[19] 徐会作. Sándor -Yang 平均关于一些二元平均凸组合的确界[J]. 华东师范大学学报(自然科学版),2017,2017(4):41-51.

相似文献/References:

[1]肖光基.一个重要不等式的应用[J].四川师范大学学报(自然科学版),1984,(04):0.
[2]何晓红,徐会作,钱伟茂.Toader型平均的调和、几何、形心和反调和平均界[J].四川师范大学学报(自然科学版),2019,42(04):516.[doi:10.3969/j.issn.1001-8395.2019.04.013]
 HE Xiaohong,XU Huizuo,QIAN Weimao.Sharp Bounds for Toader-type Mean in Terms of Harmonic,Geometric, Centroidal and Contra-harmonic Means[J].Journal of SichuanNormal University,2019,42(01):516.[doi:10.3969/j.issn.1001-8395.2019.04.013]

备注/Memo

备注/Memo:
收稿日期:2018-02-23 接受日期:2019-01-02 基金项目:国家自然科学基金(61673169、11301127)和浙江省教育厅2017年度高校访问学者“教师专业发展项目”(FX2017084) 第一作者简介:李少云(1966—),男,讲师,主要从事解析不等式的研究,E-mail:1030899156@qq.com
更新日期/Last Update: 2019-12-04