[1]于家辉,宋金璠,陈兰莉,等.压力下HfCr2合金的电子结构和弹性性质[J].四川师范大学学报(自然科学版),2020,43(01):68-78.[doi:10.3969/j.issn.1001-8395.2020.01.010]
 YU Jiahui,SONG Jinfan,CHEN Lanli,et al.Theoretical Investigations on the Electronic and Elastic Properties of HfCr2 Alloy under Pressure[J].Journal of SichuanNormal University,2020,43(01):68-78.[doi:10.3969/j.issn.1001-8395.2020.01.010]
点击复制

压力下HfCr2合金的电子结构和弹性性质()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
43卷
期数:
2020年01期
页码:
68-78
栏目:
基础理论
出版日期:
2019-12-04

文章信息/Info

Title:
Theoretical Investigations on the Electronic and Elastic Properties of HfCr2 Alloy under Pressure
文章编号:
1001-8395(2020)01-0068-11
作者:
于家辉1 宋金璠1 陈兰莉1 濮春英2* 张飞武345 周大伟2
1. 南阳理工学院 电子与电气工程学院, 河南 南阳 473004; 2. 南阳师范学院 物理与电子工程学院, 河南 南阳 473061; 3. 中国科学院地球化学研究所 矿床地球化学国家重点实验室, 贵州 贵阳 550081; 4. 苏州科技大学 数理系, 江苏 苏州 215009; 5. 科廷大学 纳米化学研究所, 澳大利亚 珀斯 WA6845
Author(s):
YU Jiahui1 SONG Jinfan1 CHEN Lanli1 PU Chunying2 ZHANG Feiwu345 ZHOU Dawei2
1. School of Electronics and Electrical Engineering, Nanyang Institute of Technology, Nanyang 473004, Henan; 2. College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, Henan; 3. State Key Laboratory of Ore Deposit Geoch
关键词:
电子结构 弹性性质 应力-应变曲线
Keywords:
electronic structures elastic properties strain-stress curves
分类号:
O469; O48
DOI:
10.3969/j.issn.1001-8395.2020.01.010
文献标志码:
A
摘要:
采用基于密度泛函理论的第一性原理方法,对实验上发现的HfCr2合金立方和六角相在0~20 GPa范围内的稳定性、电子结构和弹性等进行了研究.计算结果表明,在研究的压力范围内2种结构在力学上都是稳定的,但从能量上看,立方相结构能量更低,从而六角相以亚稳态存在,这与实验结果相符.随压力增加,HfCr2合金的体模量B、剪切模量G和杨氏模量E的值均增加,但剪切模量值始终最小,表明合金抗剪切能力较差.对合金的弹性各向异性研究发现,在研究压力范围内2结构都展示出较强的各向同
Abstract:
A first-principles approach based on density functional theory is used to systemically investigate the stability, electronic structures and elastic properties of the cubic and hexagonal phases of HfCr2 alloy found experimentally in a certain pressure range. The results show that the calculated elastic constants Cij of two structures meet the mechanical stability criteria in the pressure range 0-20 GPa. However, from the energy point-of-view, the cubic phase has a lower energy than that of the hexagonal phase. So the hexagonal phase is a metastable structure. The bulk modulus B, shear modulus G and Young's modulus E of HfCr2 alloy increase with increasing pressure. The shear modulus G is always the smallest, so that the shear resistance is the weakest at pressure in the 0-20 GPa range. The study of elastic anisotropy of HfCr2 alloy shows that both the cubic and hexagonal structures exhibit a strong isotropy over the pressure range from 0 to 20 GPa. As pressure increases, the elastic anisotropy for cubic phase decreases, while it increases for hexagonal phase. Further investigation on the elastic anisotropy of HfCr2 alloy shows that the bulk modulus B of both phases exhibits strong isotropy on the whole, while the Young's modulus E exhibits a certain degree of anisotropy for both phases. The study of Poisson and G/B's ratios for HfCr2 alloy shows that both phases exhibit ductility at 0 GPa and the degree of ductility will increase with increasing pressure in the pressure range 0-20 GPa. Finally, the stress-strain relationships for HfCr2 alloy are investigated, and the results reveal that for cubic phase structure, the ideal tension and shear strengths appear in[1 0 0] direction and(1 1 1)[112] direction, respectively, while for hexagonal phase structure, the ideal tension and shear strengths appear in[0 0 0 1] direction and (1010)[1210] direction at 0 GPa, respectively.

参考文献/References:

[1] LEVY O, HART G L W, CURTAROLO S. Hafnium binary alloys from experiments and first principles[J]. Acta Mater,2010,58(8):2887-2897.
[2] VON KEITZ A, SAUTHOFF G. Laves phases for high temperatures:part II:Stability and mechanical properties[J]. Intermetallics,2002,10(5):497-510.
[3] CRAMER S D, COVINO B S. ASM Handbook[M]. 10th ed. Metals Park(OH):ASM International,2005.
[4] KORDESCH K V, DE OLIVERA J C T. Ullman's Encyclopedia of Industrial Chemistry[M]. New York:VCH,1989.
[5] DAVIDSON J A. Titanium molybdenum hafnium alloys for medical implants and devices:U.S.1970829327[P]. 1998-03-24.
[6] MENG X L, FU Y D, CAI W, et al. Microstructure and martensitic transformation behaviors of a Ti-Ni-Hf-Cu high-temperature shape memory alloy ribbon[J]. Phil Mag Lett,2009,89(7):431-438.
[7] BAUDRY A, BOYER P, FERREIRA L P, et al. A study of muon localization and diffusion in Hf2Co and Hf2CoH3[J]. J Phys Condens Mat,1992,4(21):5025.
[8] VENKATRAMAN M, NEUMANN J P. The Cr-Hf(Chromium-Hafnium)system[J]. J Phase Equilib,1986,7(6):570-573.
[9] ALISOVA S P, BUDBERG P B, SHAKHOVA K I. Crystal Structure of the Compound HfCr2[J]. Sov Phys Crystallogr,1964,9(1):78-79.
[10] CARLSON O N, ALEXANDER D G. The hafnium-chromium system[J]. J Less-Common Met,1968,15(4):361-370.
[11] RUDY E, WINDISCH S T. The phase diagrams hafnium-vanadium and hafnium- chromium[J]. J Less-Common Met,1968,15(1):13-27.
[12] AUFRECHT J, LEINEWEBER A, DUPPEL V, et al. Polytypic transformations of the HfCr2 laves phase–Part I:structural evolution as a function of temperature, time and composition[J]. Intermetallics,2011,19(10):1428-1441.
[13] CHEN X Q, WOLF W, PODLOUCKY R, et al. Ab initio study of ground-state properties of the Laves phase compounds TiCr2, ZrCr2, and HfCr2[J]. Phys Rev,2005,B71(17):174101.
[14] DUAN D F, HUANG X L, TIAN F B, et al. Pressure-induced decomposition of solid hydrogen sulfide[J]. Phys Rev,2015,B91(18):180502.
[15] DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense(H2S)2H2 with high-Tc superconductivity[J]. Sci Rep,2014,4:6968.
[16] WANG Y C, LÜ J, ZHU L, et al. CALYPSO:a method for crystal structure prediction[J]. Comput Phys Commun,2012,183(10):2063-2070.
[17] WANG Y C, LÜ J, ZHU L, et al. Crystal structure prediction via particle swarm optimization[J]. Phys Rev,2010,B82(9):094116.
[18] JIANG X, ZHAO J J, JIANG X. Correlation between hardness and elastic moduli of the covalent crystals[J]. Comp Mater Sci,2011,50(7):2287-2290.
[19] HU C H, OGANOV A R, ZHU Q, et al. Pressure-induced stabilization and insulator-superconductor transition of BH[J]. Phys Rev Lett,2013,110(16):165504.
[20] YU S Y, ZENG Q F, OGANOV A R, et al. Phase stability, chemical bonding and mechanical properties of titanium nitrides:a first-principles study[J]. PCCP,2015,17(17):11763-11769.
[21] GUO Y L, QIU W J, KE X Z, et al. A new phase of ThC at high pressure predicted from a first-principles study[J]. Phys Lett,2015,A379(26/27):1607-1611.
[22] LIU Q J, QIN H, JIAO Z, et al. First-principles calculations of structural, elastic, and electronic properties of trigonal ZnSnO3 under pressure[J]. Mater Chem Phys,2016,180:75-81.
[23] HADI M A. New ternary nanolaminated carbide Mo2Ga2C:a first-principles comparison with the MAX phase counterpart Mo2GaC[J]. Comp Mater Sci,2016,117:422-427.
[24] DING L P, SHAO P, ZHANG F H, et al. Crystal structures, stabilities, electronic properties, and hardness of MoB2:first-principles calculations[J]. Inorg Chem,2016,55(14):7033-7040.
[25] WEI X, CHEN Z G, ZHONG J, et al. Effect of alloying elements on mechanical, electronic and magnetic properties of Fe2B by first-principles investigations[J]. Comp Mater Sci,2018,147:322-330.
[26] SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation:ideas, illustrations and the CASTEP code[J]. J Phys Condens Matter,2002,14(11):2717.
[27] MARLO M, MILMAN V. Density-functional study of bulk and surface properties of titanium nitride using different exchange-correlation functional[J]. Phys Rev,2000,B62(4):2899.
[28] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism[J]. Phys Rev,1990,B41(11):7892.
[29] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett,1996,77(18):3865.
[30] MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations[J]. Phys Rev B,1976,13(12):5188.
[31]ELLIOTT R P. Laves-type phases of Hafnium[J]. Trans Am Soc Metals,1961,53:321-329.
[32] LIU L L, SHEN P, WU X, et al. First-principles calculations on the stacking fault energy, surface energy and dislocation properties of NbCr 2 and HfCr2[J]. Comp Mater Sci,2017,140:334-343.
[33] HONG S, FU C L. Theoretical study on cracking behavior in two-phase alloys Cr-Cr2X(X= Hf, Nb, Ta, Zr)[J]. Intermetallics,2001,9(9):799-805.
[34] PANDEY D K, YADAWA P K, YADAV R R. Acoustic wave propagation in Laves-phase compounds[J]. Mater Lett,2007,61(25):4747-4751.
[35] SIN'KO G V, SMIRNOV N A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure[J]. J Phys Condens Matter,2002,14(29):6989.
[36] BORN M. On the stability of crystal lattices. I.[J]. Math Proc Cambridge Philos Soc,1940,36(2):160-172.
[37] CHUNG D H, BUESSEM W R. The voigt-reuss-hill approximation and elastic moduli of polycrystalline MgO,CaF2, β-ZnS,ZnSe, and CdTe[J]. J Appl Phys,1967,38(6):2535-2540.
[38] WATT J P, PESELNICK L. Clarification of the Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries[J]. J Appl Phys,1980,51(3):1525-1531.
[39] HILL R. The elastic behaviour of a crystalline aggregate[J]. Phys Soc,1952,A65(5):349.
[40] RAVINDRAN P, FAST L, KORZHAVYI P A, et al. Density functional theory for calculation of elastic properties of orthorhombic crystals:application to TiSi2 [J]. J Appl Phys,1998,84(9):4891-4904.
[41] RANGANATHAN S I, OSTOJA-STARZEWSKI M. Universal elastic anisotropy index[J]. Phys Rev Lett,2008,101(5):055504.
[42] ZENG M X, WANG R N, TANG B Y, et al. Elastic and electronic properties of Ti26-type Mg12RE(RE= Ce, Pr and Nd)phases[J]. Simul Mater Sci Eng,2012,20(3):035018.
[43] NYE J F. Physical Properties of Crystals[M]. Oxford:Oxford University Press,1985.
[44] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. Phi Mag,1954,45(367):823-843.
[45] UMENO Y, KINOSHITA Y, KITAMURA T. Ab initio DFT simulation of ideal shear deformation of SiC polytypes[J]. Model Simul Mater Sci Eng,2006,15(2):27.
[46] POKLUDA J,(ˇoverC)ERN('overY)M, ANDERA P, et al. Calculations of theoretical strength:state of the art and history[J]. J Comput Aided Mater Des,2004,11(1):1-28.
[47] ROUNDY D, KRENN C R, COHEN M L, et al. The ideal strength of tungsten[J]. Philos Mag,2001,A81(7):1725-1747.
[48] ROUNDY D, KRENN C R, COHEN M L, et al. Ideal shear strengths of fcc aluminum and copper[J]. Phys Rev Lett,1999,82(13):2713.

相似文献/References:

[1]周 清,田 斌.Cr掺杂BN半金属铁磁性的第一性原理计算[J].四川师范大学学报(自然科学版),2009,(02):226.
 ZHOU Qing,TIAN bin.The Firstˉprinciples Calculations ofHa lfˉmetallic Ferromagnetism in Crˉdoped BN[J].Journal of SichuanNormal University,2009,(01):226.
[2]许芳伟,薛卫东,苏 荣,等.LiFePO 4 掺杂Mg前后导电性能的理论研究[J].四川师范大学学报(自然科学版),2008,(02):224.
 XU Fangwei,XUEW eidong,SU Rong,et al.Theoretical Study on the Conductivity ofPure andMgˉdoped LiFePO 4[J].Journal of SichuanNormal University,2008,(01):224.

备注/Memo

备注/Memo:
收稿日期:2018-05-03 接受日期:2018-08-30 基金项目:国家自然科学基金(51501093)、NSFC-河南人才培养联合基金(U1404608和U1304612)、河南省骨干教师计划(2015GGJS-122)、河南省高校创新人才计划(16HASTIT047)和中国博士后基金(2015M581766) *通信作者简介:濮春英(1979—),女,副教授,主要从事凝聚态计算物理的研究,E-mail:puchunying@126.com
更新日期/Last Update: 2019-12-04