[1]朱基亮.超级电容器用金属层状双氢氧化物电极材料研究进展[J].四川师范大学学报(自然科学版),2020,43(03):285-296.[doi:10.3969/j.issn.1001-8395.2020.03.001]
 ZHU Jiliang.Metal Layered Double Hydroxides Electrode Materials for Supercapacitor[J].Journal of SichuanNormal University,2020,43(03):285-296.[doi:10.3969/j.issn.1001-8395.2020.03.001]
点击复制

超级电容器用金属层状双氢氧化物电极材料研究进展()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
43卷
期数:
2020年03期
页码:
285-296
栏目:
特约专稿
出版日期:
2020-05-05

文章信息/Info

Title:
Metal Layered Double Hydroxides Electrode Materials for Supercapacitor
文章编号:
1001-8395(2020)03-0285-12
作者:
朱基亮
四川大学 材料科学与工程学院, 四川 成都 610064
Author(s):
ZHU Jiliang
College of Materials Science and Engineering, Sichuan University, Chengdu 610064, Sichuan
关键词:
金属层状双氢氧化物 超级电容器 制备工艺 电化学性能
Keywords:
metal layered double hydroxides supercapacitor preparation method electrochemical performance
分类号:
TM53
DOI:
10.3969/j.issn.1001-8395.2020.03.001
文献标志码:
A
摘要:
金属层状双氢氧化物(LDHs)作为具有赝电容特性的电极材料,以法拉第反应机理为基础进行储能,其特殊的层状结构可以提供高比表面积和反应活性位点,从而实现高比容量,是一种理想的超级电容器电极材料.结合近几年的相关文献报道,综述金属层状双氢氧化物电极材料的机理特性、制备工艺、电化学性能,展望其在超级电容器领域的发展趋势.
Abstract:
As pseudocapacitive electrode materials, metallayered double hydroxides(LDHs)store energy by farad reactions. Metal layered double hydroxides own high specific surface area, active reaction sites as well as excellent specific capacitance due to their special layered structure. Therefore, they are ideal materials when being applied in supercapacitor electrodes. Based on the related literatures reported in recent years, mechanism, preparation methods and electrochemical performance of metal layered double hydroxides electrode materials are reviewed. The development trend of them in the field of supercapacitor are prospected.

参考文献/References:

[1] SIMON P, GOGOTSI Y. Materials for electrochemical capacitors[J]. Nature Materials,2008,7:845-854.
[2] WANG G P, ZHANG L, ZHANG L L. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews,2012,41(2):797-828.
[3] WANG Q, YAN J, FAN Z J. Carbon materials for high volumetric performance supercapacitors:design, progress, challenges and opportunities[J]. Energy & Environmental Science,2016,9(3):729-762.
[4] LEE J, ORILALL M C, WARREN S C, et al. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores[J]. Nature Materials,2008,7:222-228.
[5] ZHANG L L, ZHAO X S. Carbon-based materials as supercapacitor electrodes[J]. Chemical Society Reviews,2009,38(9):2520-2531.
[6] WANG D W, LI F, LIU M, et al. 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage[J]. Angewandte Chemie:Inter Ed,2008,47(2):373-376.
[7] LI W, CHEN D, LI Z, et al. Nitrogen-containing carbon spheres with very large uniform mesopores:the superior electrode materials for EDLC in organic electrolyte[J]. Carbon,2007,45(9):1757-1763.
[8] ANIA C O, KHOMENKO V, RAYMUNDO E, et al. The large electrochemical capacitance of microporous doped carbon obtained by using a zeolite template[J]. Advanced Functional Materials,2007,17(11):1828-1836.
[9] WANG H W, XU Z J, YI H, et al. One-step preparation of single-crystalline Fe2O3 particles/graphene composite hydrogels as high performance anode materials for supercapacitors[J]. Nano Energy,2014,7:86-96.
[10] LU X H, YU M H, WANG G M, et al. Flexible solid-state supercapacitors:design, fabrication and applications[J]. Energy & Environmental Science,2014,7(7):2160-2181.
[11] DU G, ZENG Z F, XIAO B Q, et al. Nanocrystalline LaOx/NiO composite as high performance electrodes for supercapacitors[J]. Dalton Transactions,2017,46(47):16532-16540.
[12] MA F X, YU L, XU C Y, et al. Self-supported formation of hierarchical NiCo2O4 tetragonal microtubes with enhanced electrochemical properties[J]. Energy & Environmental Science,2016,9(3):862-866.
[13] LIU H J, ZHU W L, LONG D F, et al. Porous V2O5 nanorods/reduced graphene oxide composites for high performance symmetric supercapacitors[J]. Applied Surface Science,2019,478(1):383-392.
[14] WANG Z X, ZHU J L, SUN P, et al. Nanostructured Mn-Cu binary oxides for supercapacitor[J]. J Alloys Compounds,2014,598(15):166-170.
[15] ZENG Z F, SUN P, ZHU J L, et al. Ag-doped manganese oxide prepared by electrochemical deposition on carbon fiber for supercapacitors[J]. RSC Advances,2015,5(23):17550-17558.
[16] JIN H X, YUAN D Q, ZHU S Y, et al. Ni-Co layered double hydroxide on carbon nanorods and graphene nanoribbons derived from MOFs for supercapacitors[J]. Dalton Transactions,2018,47(26):8706-8715.
[17] YUAN Y, ZHU W L, DU G, et al. Two-step method for synthesizing polyaniline with bimodal nanostructures for high performance supercapacitors[J]. Electrochimica Acta,2018,282(20):286-294.
[18] ZHOU Y K, HE B L, ZHOU W J, et al. Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites[J]. Electrochimica Acta,2004,49(2):257-262.
[19] FAN L Z, MAIER J. High-performance polypyrrole electrode materials for redox supercapacitors[J]. Electrochemistry communications,2006,8(6):937-940.
[20] GUPTA V, MIURA N. High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline[J]. Materials Letters,2006,60(12):1466-1469.
[21] CONWAY B E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage[C]//Proc Inter Power Sources Symp,1991,138(6):319-327.
[22] HU C C, CHANG K H, LIN M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors[J]. Nano letters,2006,6(12):2690-2695.
[23] LIANG H Y, LIN J H, JIA H N, et al. Hierarchical NiCo-LDH@NiOOH core-shell heterostructure on carbon fiber cloth as battery-like electrode for supercapacitor[J]. J Power Sources,2018,378(28):248-254.
[24] LI Z P, HAN F C, LI C, et al. Multi-anion intercalated layered double hydroxide nanosheet-assembled hollow nanoprisms with improved pseudocapacitive and electrocatalytic properties[J]. Chemistry-An Asian J,2018,13(9):1129-1137.
[25] PATEL R, PARK J, PATEL M, et al. Transition-metal-based layered double hydroxides tailored for energy conversion and storage[J]. J Materials Chemistry A,2018,6:12-29.
[26] WANG Q, O'HARE D. Recent advances in the synthesis and application of layered double hydroxide(LDH)nanosheets[J]. Chemical Reviews,2012,112(7):4124-4155.
[27] CHEN H, HU L F, CHEN M, et al. Nickel-cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials[J]. Advanced Functional Materials,2014,24(7):934-942.
[28] LI T, LI G H, LIU L, et al. Large-scale self-assembly of 3D flower-like hierarchical Ni/Co-LDHs microspheres for high-performance flexible asymmetric supercapacitors[J]. Acs Applied Materials & Interfaces,2016,8(4):2562-2572.
[29] ZHA D S, SUN H H, FU Y S, et al. Acetate anion-intercalated nickel-cobalt layered double hydroxide nanosheets supported on Ni foam for high-performance supercapacitors with excellent long-term cycling stability[J]. Electrochimica Acta,2017,236(10):18-27.
[30] LONG D F, LIU H J, YUAN Y, et al. A facile and large-scale synthesis of NiCo-LDHs@rGO composite for high performance asymmetric supercapacitors[J]. J Alloys Compounds,2019,805(15):1096-1105.
[31] CHU X Y, DENG T, ZHANG W, et al. Architecture of Co-layered double hydroxide nanocages/graphene composite electrode with high electrochemical performance for supercapacitor[J]. J Energy Chemistry,2018,27(2):507-512.
[32] CHEN F G, ZHANG L Y, WU H Q, et al. Bifunctional oxygen evolution and supercapacitor electrode with integrated architecture of NiFe-layered double hydroxides and hierarchical carbon framework[J]. Nanotechnology,2019,30(32):325402.
[33] JEONG Y M, SON I, BAEK S H. Binder-free of NiCo-layered double hydroxides on Ni-coated textile for wearable and flexible supercapacitors[J]. Applied Surface Science,2019,467/468(15):963-967.
[34] LI L, FU J J, HUI K S, et al. Controllable preparation of 2D nickel aluminum layered double hydroxide nanoplates for high-performance supercapacitors[J]. J Materials Science:Materials Electronics,2018,29(20):17493-17502.
[35] XU J M, LIAO K, SONG K X, et al. Fast in situ synthesis of CoFe layered double hydroxide onto multi-layer graphene for electrochemical capacitors[J]. J Solid State Electrochemistry,2018,22(4):1037-1045.
[36] LIN J H, JIA H N, LIANG H Y, et al. Hierarchical CuCo2S4@NiMn-layered double hydroxide core-shell hybrid arrays as electrodes for supercapacitors[J]. Chemical Engineering J,2018,336(15):562-569.
[37] HE X Y, LI R M, LIU J Y, et al. Hierarchical FeCo2O4 @NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors[J]. Chemical Engineering J,2018,334(15):1573-1583.
[38] LV Y M, LIU A F, SHI Z X, et al. Hierarchical MnCo2O4/NiMn layered double hydroxide composite nanosheet arrays on nickel foam for enhanced electrochemical storage in supercapacitors[J]. Chem Electro Chem,2018,5(24):3968-3979.
[39] LI L, HUI K S, HUI K N, et al. High-performance solid-state flexible supercapacitor based on reduced graphene oxide/hierarchical core-shell Ag nanowire@NiAl layered double hydroxide film electrode[J]. Chemical Engineering J,2018,348(15):338-349.
[40] LI H, MUSHARAVATI F, SUN J T, et al. Investigation of the electrochemical properties of CoAl-layered double hydroxide/Ni(OH)2[J]. J The Electrochemical Society,2018,165(2):A407-A415.
[41] WANG L P, QIN K Q, LI J J, et al. Nanotubular Ni-supported graphene@hierarchical NiCo-LDH with ultrahigh volumetric capacitance for supercapacitors[J]. Applied Surface Science,2018,453(30):230-237.
[42] HAN E S, HAN Y J, ZHU L Z, et al. Polyvinyl pyrrolidone-assisted synthesis of flower-like nickel-cobalt layered double hydroxide on Ni foam for high-performance hybrid supercapacitor[J]. Ionics,2018,24(9):2705-2715.
[43] WANG W C, ZHANG N, SHI Z Y, et al. Preparation of Ni-Al layered double hydroxide hollow microspheres for supercapacitor electrode[J]. Chemical Engineering J,2018,338(15):55-61.
[44] LIANG T, XUANG H C, XU Y K, et al. Rational assembly of CoAl-layered double hydroxide on reduced graphene oxide with enhanced electrochemical performance for energy storage[J]. Chem Electro Chem,2018,5(17):2424-2434.
[45] DU Q H, SU L, HOU L Y, et al. Rationally designed ultrathin Ni-Al layered double hydroxide and gaphene heterostructure for high-performance asymmetric supercapacitor[J]. J Alloys Compounds,2018,740(5):1051-1059.
[46] XU S K, DALL'AGNESE Y, WEI G D, et al. Screen-printable microscale hybrid device based on MXene and layered double hydroxide electrodes for powering force sensors[J]. Nano Energy,2018,50:479-488.
[47] LIU L L, GUAN T, FANG L, et al. Self-supported 3D NiCo-LDH/Gr composite nanosheets array electrode for high-performance supercapacitor[J]. J Alloys Compounds,2018,763(30):926-934.
[48] XIAO T, WANG S L, LI J, et al. Sulfidation of NiFe-layered double hydroxides as novel negative electrodes for supercapacitors with enhanced performance[J]. J Alloys Compounds,2018,768(5):635-643.
[49] ZHOU P, WANG C, LIU Y Y, et al. Sulfuration of NiV-layered double hydroxide towards novel supercapacitor electrode with enhanced performance[J]. Chemical Engineering J,2018,351(1):119-126.
[50] GAO H X, CAO Y, CHEN Y, et al. Ultrathin NiFe-layered double hydroxide decorated NiCo2O4 arrays with enhanced performance for supercapacitors[J]. Applied Surface Science,2019,465(28):929-936.
[51] WANG S B, LIU H J, LI Z, et al. Facile preparation of Ni-Mn layered double hydroxide nanosheets/carbon for supercapacitor[J]. J Materials Science:Materials Electronics,2019,30(1):7524-7533.
[52] XU H, WU J X, LIU J, et al. Growth of cobalt-nickel layered double hydroxide on nitrogen-doped graphene by simple co-precipitation method for supercapacitor electrodes[J]. J Materials Science:Materials Electronics,2018,29(20):17234-17244.
[53] SANATI S, REZVANI Z. Ultrasound-assisted synthesis of NiFe- layered double hydroxides as efficient electrode materials in supercapacitors[J]. Ultrasonics-Sonochemistry,2018,48:199-206.
[54] ZARDKHOSHOUI A M, DAVARANI S S H. All-solid-state, flexible, ultrahigh performance supercapacitors based on the Ni-Al LDH-rGO electrodes[J]. J Alloys Compounds,2018,750(25):515-522.
[55] XIAO B Q, ZHU W L, LI Z, et al. Tailoring morphology of cobalt-nickel layered double hydroxide via different surfactants for high-performance supercapacitor[J]. Royal Society Open Science,2018,5(9):180867.
[56] ZHI L Z, ZHANG W L, DANG L Q, et al. Holey nickel-cobalt layered double hydroxide thin sheets with ultrahigh areal capacitance[J]. J Power Sources,2018,387(31):108-116.
[57] LU H C, CHEN J Z, TIAN Q H. Wearable high-performance supercapacitors based on Ni-coated cotton textile with low-crystalline Ni-Al layered double hydroxide nanoparticles[J]. J Colloid Interface Science,2018,513(1):342-348.

备注/Memo

备注/Memo:
收稿日期:2020-01-06 接受日期:2020-01-14 基金项目:国家自然科学基金(51472172) 作者简介:朱基亮(1967-),男,教授,博导,主要从事储能材料与器件的研究,E-mail:jlzhu167@scu.edu.cn
更新日期/Last Update: 2020-05-05