[1]帅 鲲,潘志刚,蒲志林,等.带磁场项的非线性Schrdinger方程解的有限时间爆破[J].四川师范大学学报(自然科学版),2020,43(03):309-320.[doi:10.3969/j.issn.1001-8395.2020.03.004]
 SHUAI Kun,PAN Zhigang,PU Zhilin,et al.The Finite Time Blow-up of Solutions for the Nonlinear Schrdinger Equation with Magnetic Field[J].Journal of SichuanNormal University,2020,43(03):309-320.[doi:10.3969/j.issn.1001-8395.2020.03.004]
点击复制

带磁场项的非线性Schrödinger方程解的有限时间爆破()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
43卷
期数:
2020年03期
页码:
309-320
栏目:
基础理论
出版日期:
2020-05-05

文章信息/Info

Title:
The Finite Time Blow-up of Solutions for the Nonlinear Schrödinger Equation with Magnetic Field
文章编号:
1001-8395(2020)03-0309-12
作者:
帅 鲲1 潘志刚2 蒲志林3 熊 胤4
1. 电子科技大学 成都学院, 四川 成都 611731; 2. 西南交通大学 数学学院, 四川 成都 610031; 3. 四川师范大学 数学科学学院, 四川 成都 610066; 4. 四川师范大学 法学院, 四川 成都 610066
Author(s):
SHUAI Kun1 PAN Zhigang2 PU Zhilin3 XIONG Yin4
1. Chengdu College of University of Electronic Science and Technology of China, Chengdu 611731, Sichuan; 2. College of Mathematics, Southwest Jiaotong Universtity, Chengdu 610031, Sichuan; 3. School of Mathematical Science, Sichuan Normal University, Chengdu 610066, Sichuan; 4. College of Law, Sichuan Normal University, Chengdu 610066, Sichuan
关键词:
非线性Schrödinger方程 磁场 径向对称解 爆破
Keywords:
nonlinear Schrödinger equation magnetic field radial symmetric solutions blow-up
分类号:
O175.26
DOI:
10.3969/j.issn.1001-8395.2020.03.004
文献标志码:
A
摘要:
研究三维空间中带磁场项的非线性Schrödinger方程的柯西问题.利用变分法,通过构造一类强制变分问题,得到其径向对称解的有限时间爆破.
Abstract:
We consider the Cauchy problem of the nonlinear Schrödinger equation with magnetic field in three space dimensions. Using variational method and establishing a constrained variational problem, we obtain that the finite time blow-up of the radially symmetric solution.

参考文献/References:

[1] KONO M, KORI M M, HAAR D T. Spontaneous excitation of magnetic fields and collapse dynamics in a Langmuir plasma[J]. J Plasma Phys,1981,26(2):123-146.
[2] ZAKHAROV V E. The collapse of Langmuir waves[J]. Sov Phys JETP,1972,35(5):908-914.
[3] ZHANG J. Sharp threshold for blowup and global existence in nonlinear Schrödinger equations under a harmonic potential[J]. Commun PDE,2005,30(5):1429-1443.
[4] GLASSEY R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations[J]. J Math Phys,1977,1794(18):1794-1797.
[5] CAZENAVE T. Semilinear Schrödinger Equations[M]. New York:Courant Institute of Mathematical Sciences,2003.
[6] WEINSTEIN M I. Nonlinear Schrödinger equations and sharp interpolation estimates[J]. Commun Math. Phys,1983,87(4):567-576.
[7] GAN Z H, GUO B L, HAN L J, et al. Virial type blow-up solutions for the Zakharov system with magnetic field in a cold plasma[J]. J Functional Analysis,2011,261(9):2508-2528.
[8] IRVING S. Nonlinear semigroups[J]. Ann Math,1963,78(2):339-364.
[9] BERESTYCKI H., CAZENAVE T. Instabilitédes états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéairees [J]. C R Acad Sci Paris,1981,293(5):489-492.
[10] WEINSTEIN M I. Nonlinear Schrödinger equations and sharp interpolations estimates[J]. Comm Math Phys,1983,87(4):567-576.
[11] NIRENBERG L. On Elliptic Partial Differential Equations[M]. New York: Ann della Scuola Norm Sup Pisa,1959.
[12] KATO T, PONCE G. Commutator estimates for the Euler and Navier-Stokes equations[J]. Commun Pure Appl Math,1988,41(7):891-907.
[13] LAUREY C. The Cauchy problem for a generalized Zakharov system[J]. Diff Integral Eqns,1995,8(1):105-130.
[14] GINIBRE J, VELO G. On a class of nonlinear Schrödinger equations I, II. The Cauchy problem, general case[J]. J Funct Anal,1979,32(5):1-71.
[15] FIBICH G, GAVISH N, WANG X P. New singular solutions of the nonlinear Schrödinger equation[J]. Physica,2005,D211(3/4):193-220.

相似文献/References:

[1]李姣,张健*.具临界非线性项的随机非线性Schrödinger方程的整体解[J].四川师范大学学报(自然科学版),2010,(02):143.
 LI Jiao,ZHANG Jian.Global Solution for the Stochastic Nonlinear Schrödinger Equation with Critical Nonlinear Term[J].Journal of SichuanNormal University,2010,(03):143.
[2]汪继秀,张丹丹*,黄巧巧.带奇异项的次临界Schrdinger方程的基态解[J].四川师范大学学报(自然科学版),2019,42(02):205.[doi:10.3969/j.issn.1001-8395.2019.02.009]
 WANG Jixiu,ZHANG Dandan,HUANG Qiaoqiao.Ground State Solutions for a Quasilinear Schrdinger Equation withthe Singular Coefficient[J].Journal of SichuanNormal University,2019,42(03):205.[doi:10.3969/j.issn.1001-8395.2019.02.009]
[3]夏滨.带逆平方势的非线性Schrdinger方程的阻尼影响[J].四川师范大学学报(自然科学版),2017,(06):802.[doi:10.3969/j.issn.1001-8395.2017.06.016]
 XIA Bin.Effect of Damping for Nonlinear Schrdinger Equation with Inverse Square Potential[J].Journal of SichuanNormal University,2017,(03):802.[doi:10.3969/j.issn.1001-8395.2017.06.016]
[4]夏 滨.非相对论分子物理中带逆平方势的非线性Schrdinger方程的解整体存在[J].四川师范大学学报(自然科学版),2018,(05):648.[doi:10.3969/j.issn.1001-8395.2018.05.013]
 XIA Bin.Nonlinear Schrdinger Equation with Inverse Square Potential in Non-relativistic Molecular Physics[J].Journal of SichuanNormal University,2018,(03):648.[doi:10.3969/j.issn.1001-8395.2018.05.013]
[5]祝佳玲,米彩莲,杨 晗*.一类四阶非线性Schrdinger方程解的整体适定性[J].四川师范大学学报(自然科学版),2018,(06):748.[doi:10.3969/j.issn.1001-8395.2018.06.005]
 ZHU Jialing,MI Cailian,YANG Han.Global Well-Posedness of a Class of Fourth Order Nonlinear Schrdinger Equations[J].Journal of SichuanNormal University,2018,(03):748.[doi:10.3969/j.issn.1001-8395.2018.06.005]

备注/Memo

备注/Memo:
收稿日期:2018-04-12 接受日期:2019-04-16 基金项目:国家自然科学基金(71601135)和四川省教育厅科研项目(18ZB0254) 第一作者简介:帅 鲲(1982-),男,副教授,主要从事偏微分方程的研究,E-mail:shuaikun001@163.com
更新日期/Last Update: 2020-05-05