[1]杨 静,杨 鸣,陆征一*.一类三次微分系统的时间可逆与中心问题[J].四川师范大学学报(自然科学版),2020,43(04):442-446.[doi:10.3969/j.issn.1001-8395.2020.04.003]
 YANG Jing,YANG Ming,LU Zhengyi.The Reversibility and the Center Problem in a Cubic Differential System[J].Journal of SichuanNormal University,2020,43(04):442-446.[doi:10.3969/j.issn.1001-8395.2020.04.003]
点击复制

一类三次微分系统的时间可逆与中心问题()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
43卷
期数:
2020年04期
页码:
442-446
栏目:
基础理论
出版日期:
2020-06-20

文章信息/Info

Title:
The Reversibility and the Center Problem in a Cubic Differential System
文章编号:
1001-8395(2020)04-0442-05
作者:
杨 静12 杨 鸣12 陆征一3*
1. 中国科学院 成都计算机应用研究所, 四川 成都 610041; 2. 中国科学院大学, 北京 100049; 3. 四川师范大学 数学科学学院, 四川 成都 610066
Author(s):
YANG Jing12 YANG Ming12 LU Zhengyi3
1. Chengdu Institute of Computer Application, Chinese Academy of Sciences, Chengdu 610041, Sichuan; 2. University of Chinese Academy of Sciences, Beijing 100049; 3. School of Mathematical Sciences, Sichuan Normal University, Chengdu 610066, Sichuan
关键词:
三次系统 时间可逆 充要条件 中心 多项式微分系统
Keywords:
cubic system time reversible sufficient and necessary conditions center polynomial differential system
分类号:
O175.1
DOI:
10.3969/j.issn.1001-8395.2020.04.003
文献标志码:
A
摘要:
利用时间可逆系统的性质和Regular Chain方法得到一类三次多项式微分系统在线性对合下为时间可逆系统的充要条件,此条件保证了原点必为该系统的中心.
Abstract:
In this paper, by using the properties of time reversible system and the method of Regular Chain, the sufficient and necessary conditions for a kind of cubic polynomial differential system to be time reversible with respect to a linear involution are obtained. These conditions guarantee that the system has a center at the origin.

参考文献/References:

[1] BIRKHOFF G D. The restricted problem of three bodies[J]. Rendiconti Del Circolo Matematico Di Palermo(1884—1940),1915,39(1):265-334.
[2] DEVANEY R L. Reversible diffeomorphismas and flows[J]. Transactions of the American Mathematical Society,1976,218:89-113.
[3] LAMB J S W, ROBERTS J A G. Time-reversal symmetry in dynamical systems:a survey[J]. Physica D:Nonlinear Phenomena,1998,112(1):1-39.
[4] ZHANG W, HOU X, ZENG Z. Weak centers and bifurcation of critical periods in reversible cubic systems[J].Computers & Mathematics with Applications,2000,40(6):771-782.
[5] TEIXEIRA M A, YANG J. The center-focus problem and reversibility[J]. J Differential Equations,2001,174(1):237-251.
[6] ROMANOVSKI V G. Time-reversibility in 2-dimensional systems[J]. Open Systems & Information Dynamics,2008,15(4):359-370.
[7] GINÉ J, MAZA S. The reversibility and the center problem[J]. Nonlinear Analysis:TMA,2011,74(2):695-704.
[8] WEI L, ROMANOVSKI V, ZHANG X. Generalized involutive symmetry and its application in integrability of differential systems[J]. Zeitschrift Für Angewandte Mathematik und Physik,2017,68(6):132.
[9] HAN M, PETEK T, ROMANOVSKI V G. Reversibility in polynomial systems of ODE's[J]. Applied Mathematics and Computation,2018,338:55-71.
[10] PEARSON J M, LLOYD N G, CHRISTOPHER C J. Algorithmic derivation of centre conditions[J]. SIAM Review,1996,38(4):619-636.
[11] POINCARÉ H. Les Méthodes Nouvelles Mécanique Céleste(Volume 1)[M]. Paris:Gauthier-Villars,1892.
[12] WANG D. A class of cubic differential systems with 6-tuple focus[J]. J Differential Equations,1990,87(2):305-315.
[13] 唐璐,陆征一,杨静. 一类三次微分系统中心存在的条件[J]. 四川师范大学学报(自然科学版),2018,41(5):586-590.
[14] COX D A, LITTLE J, O'SHEA D. Undergraduate Texts in Mathematics:Ideals, Varieties, and Algorithms:An Introduction to Computational Algebraic Geometry and Commutative Algebra[M]. 4nd ed. New York:Springer-Verlag,2015.
[15] CHEN C, CORLESS R M, MORENO M M, et al. An application of regular chain theory to the study of limit cycles[J]. International Bifurcation and Chaos,2013,23(9):1350154.
[16] YANG J, LU Z. The algorithmic manipulation for the existence of limit cycles and center-focus of Kolmogorov and Lotka-Volterra systems[J]. Mathematica Applicata,2016,29(4):731-737.

相似文献/References:

[1]唐 璐,陆征一*,杨 静.一类三次微分系统中心存在的条件[J].四川师范大学学报(自然科学版),2018,(05):586.[doi:10.3969/j.issn.1001-8395.2018.05.003]
 TANG Lu,LU Zhengyi,YANG Jing.The Center Conditions for a Class of Cubic Differential Systems[J].Journal of SichuanNormal University,2018,(04):586.[doi:10.3969/j.issn.1001-8395.2018.05.003]

备注/Memo

备注/Memo:
收稿日期:2019-04-03 接受日期:2019-05-14
基金项目:高等学校博士学科点专项科研基金(20115134110001)
*通信作者简介:陆征一(1962—),男,教授,主要从事生物动力系统及计算机辅助推理的研究,E-mail:zhengyilu@hotmail.com
更新日期/Last Update: 2020-06-20