[1]伯 夏,陈滋利*,陈金喜.Banach 格上的无界绝对弱收敛的弱Dunford-Pettis算子[J].四川师范大学学报(自然科学版),2020,43(04):447-450.[doi:10.3969/j.issn.1001-8395.2020.04.004]
 BO Xia,CHEN Zili,CHEN Jinxi.Uaw-w-Dunford-Pettis Operators on Banach Lattices[J].Journal of SichuanNormal University,2020,43(04):447-450.[doi:10.3969/j.issn.1001-8395.2020.04.004]
点击复制

Banach 格上的无界绝对弱收敛的弱Dunford-Pettis算子()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
43卷
期数:
2020年04期
页码:
447-450
栏目:
基础理论
出版日期:
2020-06-20

文章信息/Info

Title:
Uaw-w-Dunford-Pettis Operators on Banach Lattices
文章编号:
1001-8395(2020)04-0447-04
作者:
伯 夏 陈滋利* 陈金喜
西南交通大学 数学学院, 四川 成都 611756
Author(s):
BO Xia CHEN Zili CHEN Jinxi
College of Mathematics, Southwest Jiaotong University, Chengdu 611756, Sichuan
关键词:
Banach 格 uaw-w-Dunford-Pettis 算子 不交列
Keywords:
Banach lattice uaw-w-Dunford-Pettis operator disjoint sequence
分类号:
O177
DOI:
10.3969/j.issn.1001-8395.2020.04.004
文献标志码:
A
摘要:
首先提出一类定义在Banach格上的新算子——无界绝对弱收敛的Dunford-Pettis算子,记作uaw-w-Dunford-Pettis算子,利用构造不交列的技巧给出uaw-w-Dunford-Pettis算子的等价刻画,并给出其中几个相关性质.最后研究该算子与弱Dunford-Pettis算子和M-弱紧算子间的关系.
Abstract:
A new class of operators is proposed, so called uaw-w-Dunford-Pettis operator. The equivalent characterization of the uaw-w-Dunford-Pettis operator is given by using the skills of disjoint sequence, and some of the related properties are given. At last, we study the relationship between uaw-w-Dunford-Pettis operators and weak Dunford-pettis operators(M-weak-compact operators)in this paper.

参考文献/References:

[1] GAO N S. Unbounded order convergence in dual spaces[J]. Math Appl,2014,419(1):347-354.
[2] DENG Y, O'BRIEN M, TROITSKY V G. Unbounded norm convergence in Banach lattices[J]. Positivity,2017,21(3):963-974.
[3] ZABETI O. Unbounded absolute weak convergence in Banach lattices[J]. Positivity,2018,22(2):501-505.
[4] OZCAN N E, GEZER N A, ZABETI O. Dunford-Pettis and compact operators based on unbounded absolute weak convergence[J/OL]. arXiv:170803970v7[mathFA],2019.
[5] ALIPRANTIS C D, BURKINSHAW O. Positive Operators[M]. Dordrecht:Springer-Verlag,2006.
[6] ZAANEN A C. Introduction to Operator Theory in Riesz Spaces[M]. Dordrecht:Springer-Verlag,2012.
[7] ALIPRANTIS C D, BURKINSHAW O. Dunford-Pettis operators on Banach lattices[J]. Transactions of the American Mathematical Society,1982,274(1):227-238.
[8] CHEN J X, CHEN Z L, JI G X. Almost limited sets in Banach lattices[J]. Journal of Mathematical Analysis and Applications,2014,412(1):547-553.
[9] CHEN Z L, WICKSTEAD A W. Relative weak compactness of solid hulls in Banach lattices[J]. Indagationes Mathematicae,1998,9(2):187-196.
[10] GAO N S, TROITSKY V G, XANTHOS F. Uo-convergence and its applications to Cesaro means in Banach lattices[J]. Israel Journal of Mathematics,2017,220(2):649-689.
[11] GAO N S, XANTHOS F. Unbounded order convergence and application to martingales without probability[J]. Journal of Mathematical Analysis and Applications,2014,415(2):931-947.

备注/Memo

备注/Memo:
收稿日期:2018-09-03 接受日期:2018-10-16
基金项目:国家自然科学基金(11701479)
*通信作者简介: 陈滋利(1961—),男,教授,主要从事泛函分析与线性算子的理论研究,E-mail:zlchen@home.swjtu.edu.cn
更新日期/Last Update: 2020-06-20