[1]侯艾君,蒲 洋,廖家锋*.一类带奇异项的Schrdinger-Poisson系统正解的唯一性[J].四川师范大学学报(自然科学版),2020,43(04):480-485.[doi:10.3969/j.issn.1001-8395.2020.04.010]
 HOU Aijun,PU Yang,LIAO Jiafeng.Uniqueness of Positive Solutions for a Class of Schrdinger-Poisson Systems with Singularity[J].Journal of SichuanNormal University,2020,43(04):480-485.[doi:10.3969/j.issn.1001-8395.2020.04.010]
点击复制

一类带奇异项的Schrödinger-Poisson系统正解的唯一性()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
43卷
期数:
2020年04期
页码:
480-485
栏目:
基础理论
出版日期:
2020-06-20

文章信息/Info

Title:
Uniqueness of Positive Solutions for a Class of Schrödinger-Poisson Systems with Singularity
文章编号:
1001-8395(2020)04-0480-06
作者:
侯艾君1 蒲 洋1 廖家锋12*
1. 西华师范大学 数学与信息学院, 四川 南充 637002; 2. 西华师范大学 公共数学学院, 四川 南充 637002
Author(s):
HOU Aijun1 PU Yang1 LIAO Jiafeng12
1.School of Mathematics and Information, China West Normal University, Nanchong 637002, Sichuan; 2.College of Mathematics Education, China West Normal University, Nanchong 637002, Sichuan
关键词:
Schrödinger-Poisson系统 正解 变分法 奇异 唯一性
Keywords:
Schrödinger-Poisson system positive solutions variational method singularity uniqueness
分类号:
O177.91
DOI:
10.3969/j.issn.1001-8395.2020.04.010
文献标志码:
A
摘要:
研究一类带奇异项的Schrödinger-Poisson系统,结合变分方法和临界点理论,获得该问题正解的存在唯一性.
Abstract:
A class of Schrödinger-Poisson systems with singularity is considered. Combining with the variational method and critical point theory, the uniqueness result of positive solutions is obtained.

参考文献/References:

[1] ZHANG Q. Existence, uniqueness and multiplicity of positive solutions for Schrödinger-Poisson system with singularity[J]. J Math Anal Appl,2016,437(1):160-180.
[2] LI F Y, SONG Z X, ZHANG Q. Existence and uniqueness results for Kirchhoff-Schrödinger-Poisson system with general singularity[J]. Appl Anal,2017,96(16):2906-2916.
[3] ZHANG Q. Multiple positive solutions for Kirchhoff-Schrödinger-Poisson system with general singularity[J]. Bound Value Probl,2017, 2017(1):127.
[4] LEI C Y, SUO H M. Positive solutions for a Schrödinger-Poisson system involving concave-convex nonlinearities[J]. Comput Math Appl,2017,74(6):1516-1524.
[5] AZZOLLINI A, D'AVENIA P, LUISI V. Generalized Schrödinger-Poisson type systems[J]. Commun Pure Appl Anal,2013,12(2):867-879.
[6] AZZOLLINI A, D'AVENIA P. On a system involving a critically growing nonlinearity[J]. J Math Anal Appl,2012,387(1):433-438.
[7] ZENG L, TANG C L. Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent[J]. Ann Polon Math,2016,117(1):163-180.
[8] 丁凌,汪继秀,肖氏武. 全空间上具有临界指数的Kirchhoff类方程无穷多个正解的存在性[J]. 南昌大学学报(理科版),2017,41(5):414-417.
[9] 丁凌,汪继秀,张丹丹. 全空间上具有临界指数的Kirchhoff类方程两个正解的存在性[J]. 四川大学学报(自然科学版),2018,55(3):457-461.
[10] LIU X, SUN Y J. Multiple positive solutions for Kirchhoff type problems with singularity[J]. Commun Pure Appl Anal,2013,12(2):721-733.
[11] 曹小强,孙义静. 一类奇异非线性Kirchhoff型问题的正解[J]. 中国科学院大学学报,2014,31(1):5-9.
[12] 廖家锋,陈明,张鹏. 一类奇异Kirchhoff型问题正解的存在性[J]. 四川师范大学学报(自然科学版),2016,39(1):103-106.
[13] LEI C Y, CHU C M, SUO H M, et al. On Kirchhoff type problems involving critical and singular nonlinearities[J]. Ann Pol Math,2015,114(3):269-291.
[14] 刘芮琪,吴行平,唐春雷. 高维空间中一类奇异Kirchhoff型问题正解的存在性[J]. 西南大学学报(自然科学版),2016,38(4):67-71.
[15] LIU R Q, TANG C L, LIAO J F, et al. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four[J]. Commun Pure Appl Anal,2016,15(5):1841-1856.

相似文献/References:

[1]许丽萍,陈海波.三维空间中次线性Schrdinger-Kirchhoff型方程的无穷多个负能量解(英)[J].四川师范大学学报(自然科学版),2015,(01):46.
 XU Liping,CHEN Haibo (..Infinitely Many Negative Energy Solutions for Sublinear Schrdinger-Kirchhoff-Type Equations in R3[J].Journal of SichuanNormal University,2015,(04):46.
[2]汪继秀,张丹丹*,黄巧巧.带奇异项的次临界Schrdinger方程的基态解[J].四川师范大学学报(自然科学版),2019,42(02):205.[doi:10.3969/j.issn.1001-8395.2019.02.009]
 WANG Jixiu,ZHANG Dandan,HUANG Qiaoqiao.Ground State Solutions for a Quasilinear Schrdinger Equation withthe Singular Coefficient[J].Journal of SichuanNormal University,2019,42(04):205.[doi:10.3969/j.issn.1001-8395.2019.02.009]

备注/Memo

备注/Memo:
收稿日期:2018-12-06 接受日期:2019-03-07
基金项目:四川省教育厅自然科学基金重点项目(18ZA0471)
*通信作者简介:廖家锋(1983—),男,教授,主要从事非线性泛函分析的研究,E-mail:liaojiafeng@163.com
更新日期/Last Update: 2020-06-20