[1]周红军,靳 潇,张文鹏,等.基于金属-石墨烯多层结构的可调谐无偏振完美吸收器[J].四川师范大学学报(自然科学版),2020,43(04):498-505.[doi:10.3969/j.issn.1001-8395.2020.04.013]
 ZHOU Hongjun,JIN Xiao,ZHANG Wenpeng,et al.Tunable Polarization-Independent Perfect Absorber Based on Metal-Graphene Multilayers[J].Journal of SichuanNormal University,2020,43(04):498-505.[doi:10.3969/j.issn.1001-8395.2020.04.013]
点击复制

基于金属-石墨烯多层结构的可调谐无偏振完美吸收器()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
43卷
期数:
2020年04期
页码:
498-505
栏目:
基础理论
出版日期:
2020-06-20

文章信息/Info

Title:
Tunable Polarization-Independent Perfect Absorber Based on Metal-Graphene Multilayers
文章编号:
1001-8395(2020)04-0498-08
作者:
周红军 靳 潇 张文鹏 李 玲 陈卫东 刘 科 唐明君 苏亚荣 谢征微*
四川师范大学 物理与电子工程学院, 四川 成都 610101
Author(s):
ZHOU Hongjun JIN Xiao ZHANG Wenpeng LI Ling CHEN Weidong LIU Ke TANG Mingjun SU Yarong XIE Zhengwei
College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610101, Sichuan
关键词:
独立可调谐 超材料吸收器 偏振无关 石墨烯
Keywords:
tunable metamaterial absorber polarization-independent graphene
分类号:
O439
DOI:
10.3969/j.issn.1001-8395.2020.04.013
文献标志码:
A
摘要:
提出一种基于金属-石墨烯多层结构并可在太赫兹区域实现从双频、多频到宽频的完美超材料吸收器.该超材料吸收器由含金电极的2种不同半径的石墨烯圆盘组成,并且每个石墨烯圆盘中的费米能级可通过加在金电极和金基底上的门电压独立控制,从而可实现其共振吸收频率的独立或同步调控,这样在不改变吸收器几何尺寸的情况下,可得到双频、多频和宽频吸收的动态调控.此外,由于结构的几何对称性,吸收器对入射光偏振不敏感,适合较大的入射倾角.结构简单和可调控性使单层石墨烯吸收器在传感、探测、隐身等领域有着潜在的应用价值.
Abstract:
In this paper, a new dual-band to multi-band to broad-band perfect metamaterial absorber based on metal-graphene multilayers is proposed in the terahertz region. The unit cell of proposed metamaterial absorber consists of two graphene discs of different radii with gold electrodes on the top and are separated by a dielectric spacer from the gold film on the bottom. In our proposed absorber, the Fermi energy in each graphene disc can be independently controlled by the gated voltages applied on the gold electrodes and gold substrates, thus achieving independent or synchronous regulation of its resonance absorption frequency. As a result, the dynamically tunable dual-band to multi-band to broad-band absorption can be obtained without changing the geometric parameters of the structure. In addition, owing to the symmetry of the structure, the proposed absorber is insensitive to polarization. Due to simple design and flexible regulation, our proposed single-layer graphene absorber can be applied in many metamaterial fields, such as sensing, detecting, and cloaking objects.

参考文献/References:

[1] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Phys Rev Lett,2008,100(20):207402.
[2] CUI J H, HUANG C, PAN W B, et al. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror[J]. Scientific Reports,2016,6:30771.
[3] LI Y L, YAN H, FARMER D B, et al. Graphene plasmon enhanced vibrational sensing of surface-adsorbed layers[J]. Nano Lett,2014,14(3):1573-1577.
[4] LEE K, CHOI H J, SON J, et al. THz near-field spectral encoding imaging using a rainbow metasurface[J]. Scientific Reports,2015,5:14403.
[5] YAHIAOUI R, TAN S Y, CONG L Q, et al. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber[J]. J Applied Physics,2015,118(8):083103.
[6] KUZNETSOV S A, PAULISH A G, GELFAND A V, et al. Matrix structure of metamaterial absorbers for multispectral terahertz imaging[J]. Prog Electromagn Res,2012,122(1):93-103.
[7] WILBERT D S, HOKMABADI M P, MARTINEZ J, et al. Terahertz metamaterials perfect absorbers for sensing and imaging[J]. Proceedings of SPIE,2013,8585:85850Y.
[8] ESCORCIA C I, GRANT J P, GOUGH J, et al. Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications:scaling to large format focal plane arrays[J]. IEEE Selected Topics in Quantum Electronics,2017,23(4):4700508.
[9] CAI W S, CHETTIAR U K, KILDISHEV A V, et al. Optical cloaking with metamaterials[J]. Nature Photonics,2007,1(4):224-227.
[10] LANDY N I, BINGHAM C M, TYLER T, et al. Design, theory, and measurement of a polarization insensitive absorber for terahertz imaging[J]. Physical Review,2009,B79(12):125104.
[11] LI J S. High absorption terahertz-wave absorber consisting of dual-C metamaterial structure[J]. Microwave and Optical Technology Letters,2013,55(5):1185-1189.
[12] WEN Q Y, ZHANG H W, XIE Y S, et al. Dual band terahertz metamaterial absorber:design, fabrication, and characterization[J]. Appl Phys Lett,2009,95(24):241111.
[13] MA Y, CHEN Q, GRANT J, et al. A terahertz polarization insensitive dual band metamaterial absorber[J]. Optics Letters,2011,36(6):945-947.
[14] WATTS C M, LIU X L, PADILLA W J. Metamaterial electromagnetic wave absorbers[J]. Advanced Materials,2012,24(23):98-120.
[15] WANG B X, WANG L L, WANG G Z, et al. Frequency continuous tunable terahertz metamaterial absorber[J]. J Lightwave Technology,2014,32(6):1183-1189.
[16] LUO C Y, LI D, LUO Q, et al. Design of a tunable multiband terahertz waves absorber[J]. J Alloys and Compounds,2015,652:18-24.
[17] BONACCORSO F, SUN Z, HASAN T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics,2010,4(9):611-622.
[18] CHEN P Y, HUANG H Y, AKINWANDE D, et al. Graphene-based plasmonic platform for reconfigurable terahertz nanodevices[J]. ACS Photonics,2014,1(8):647-654.
[19] WEIS P, GARCIA P J L, RAHM M. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene[J]. Optics Express,2014,22(7):8473.
[20] LI Z Q, HENRIKSEN E A, JIANG Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics,2008,4(7):532-535.
[21] ALAEE R, FARHAT M, ROCKSTUHL C, et al. A perfect absorber made of a graphene micro-ribbon metamaterial[J]. Optics Express,2012,20(27):28017-28024.
[22] ANDRYIEUSKI A, LAVRINENKO A V. Graphene metamaterials based tunable terahertz absorber:effective surface conductivity approach[J]. Optics Express,2013,21(7):9144-9155.
[23] ZHANG Y, FENG Y J, ZHU B, et al. Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency[J]. Optics Express,2014,22(19):22743.
[24] WU J. Tunable ultranarrow spectrum selective absorption in a graphene monolayer at terahertz frequency[J]. J Physics:Applied Physics,2016,D49(21):215108.
[25] XIONG H, TANG M C, LI M, et al. Equivalent circuit method analysis of graphene-metamaterial(GM)absorber[J]. Plasmonics,2018,13(3):857-862.
[26] XIONG H, JIANG Y N, YANG C, et al. Frequency-tunable terahertz absorber with wire-based metamaterial and graphene[J]. J Physics:Applied Physics,2018,D51(1):015102.
[27] LIU Y, ZHONG R B, HUANG J B, et al. Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials[J]. Optics Express,2019,27(5):7393-7404.
[28] CHENG H, CHEN S Q, YU P, et al. Dynamically tunable broadband mid-infrared cross polarization converter based on graphene metamaterial[J]. Appl Phys Lett,2013,103(22):223102-223104.
[29] SI J N, DONG Z W, YU X Y, et al. Tunable polarization-independent dual-band coherent perfect absorber based on metal-graphene nanoring structure[J]. Optics Express,2018,26(17):21768-21777.
[30] SUN C, DONG Z W, SI J N, et al. Independently tunable dual-band plasmonically induced transparency based on hybrid metal-graphene metamaterials at mid-infrared frequencies[J]. Optics Express,2017,25(2):1242-1250.
[31] YAO G, LING F R, YUE J, et al. Dual-band tunable perfect metamaterial absorber in the THz range[J]. Optics Express,2016,24(2):1518.
[32] GAO W L, SHU J, QIU C Y, et al. Excitation of plasmonic waves in graphene by guided-mode resonances[J]. ACS Nano,2012,6(9):7806-7813.
[33] YANG X X, KONG X T, DAI Q. Optical properties of graphene plasmons and their potential applications[J]. Acta Physica Sinica,2015,64(10):106801.
[34] KOLLATOU T M, DIMITRIADIS A I, ASSIMONIS S D, et al. Multi-band, highly absorbing, microwave metamaterial structures[J]. Applied Physics,2014,A115(2):555-561.

备注/Memo

备注/Memo:
收稿日期:2019-10-09 接受日期:2019-11-28
基金项目:四川省教育厅重点项目(16ZA0047)、四川省科技厅重点项目(2018JY0439)、四川省科技创新青年人才工程项目(19MZGC0028)、中国科学院光学与电子研究所纳米制造与微工程光学技术国家重点实验室开放基金
*通信作者简介:谢征微(1968—),男,教授,主要从事凝聚态物理、超材料和超表面的研究,E-mail:zzwxie@aliyun.com
更新日期/Last Update: 2020-06-20