[1]王雅洁,罗迎春.光-针铁矿体系对水中As(III)的去除[J].四川师范大学学报(自然科学版),2020,43(04):528-535.[doi:10.3969/j.issn.1001-8395.2020.04.017]
 WANG Yajie,LUO Yingchun.Study on Removal of Arsenite in Photo-goethite System[J].Journal of SichuanNormal University,2020,43(04):528-535.[doi:10.3969/j.issn.1001-8395.2020.04.017]
点击复制

光-针铁矿体系对水中As(III)的去除()
分享到:

《四川师范大学学报(自然科学版)》[ISSN:1001-8395/CN:51-1295/N]

卷:
43卷
期数:
2020年04期
页码:
528-535
栏目:
基础理论
出版日期:
2020-06-20

文章信息/Info

Title:
Study on Removal of Arsenite in Photo-goethite System
文章编号:
1001-8395(2020)04-0528-08
作者:
王雅洁1 罗迎春2
1. 贵州民族大学 生态环境工程学院, 贵州 贵阳 550025; 2. 贵州民族大学 化学工程学院, 贵州 贵阳 550025
Author(s):
WANG Yajie1 LUO Yingchun2
1. School of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, Guizhou; 2. School of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, Guizhou
关键词:
针铁矿 三价砷 光氧化 吸附 空穴
Keywords:
goethite arsenite photooxidation adsorption holes
分类号:
X131.2
DOI:
10.3969/j.issn.1001-8395.2020.04.017
文献标志码:
A
摘要:
在黑光灯(λmax=365 nm)照射下,对针铁矿去除As(III)进行研究.考察初始pH、针铁矿投加量、As(III)初始质量浓度对As(III)去除效能的影响,探讨不同初始pH(3.0~9.0)下光-针铁矿体系对As(III)的去除机制.结果表明,光促进了As(III)在针铁矿体系中的去除,反应90 min后不同pH值下As(III)的去除率都超过90%.As(III)的去除反应动力学符合Langmuir-Hinshelwood(H-L)动力学方程.低初始pH时 As(III)去除以光氧化为主,主要通过空穴(h+vb)和表面羟基自由基(HO·ad)氧化,液相中羟基自由基(HO·free)次之,HO2·/O-2·贡献最小; 随着初始pH增大到7.0后,As(III)以吸附为主,As(III)的光氧化基本通过h+vb实现.在不同初始pH下As(III)的去除都以表面反应为主.
Abstract:
Arsenite removal in the goethite suspensions under the irradiation of black light(λmax=365 nm)was studied. In this work, we have investigated the pH-dependent kinetics(i.e. arsenite concentrations and goethite dosages)and mechanisms of arsenite removal in the goethite suspensions(pH3.0~9.0). Results clearly show that light can accelerate the removal of arsenite in the goethite suspensions. Removal efficiencies of arsenite surpass 90% within 90 min reaction under the experiment conditions. The kinetics gives a good fit to Langmuir-Hinshelwood equation. At low initial pH, arsenite removal strongly depends on photo-oxidation. As for As(III)photo-oxidation, hole and adsorbed hydroxyl radical play crucial role, free hydroxyl radical in solution is of secondary importance, and superoxide anion is the least significant. Moreover, adsorption serves as a major removal pathway with the increase of pH; photo-oxidation plays a minor role. As(III)photo-oxidation is basically achieved by hole oxidation when initial pH is more than 7.0. In addition, the arsenite removal(including photo-oxidation and adsorption)mainly occurs at the surface of goethite.

参考文献/References:

[1] GOLDBERG S. Competitive adsorption of arsenate and arsenite on oxides and clay minerals[J]. Soil Science Society of America Journal,2002,66(2):413-421.
[2] RODRIGUE-LADO L, SUN G F, BERG M, et al. Groundwater arsenic contamination throughout China[J]. Science,2013,341(6148):866-868.
[3] VANDENBERGHE R E, DE GRAVE E, DE GEYTER G, et al. Characterization of goethite and hematite in a Tunisian soil profile by mössbauer spectroscopy[J]. Clays and Clay Minerals,1986,34(3):275-280.
[4] LELAND J K, BARD A J. Photochemistry of colloidal semiconducting iron oxide polymorphs[J]. Journal of Physical Chemistry,1987,91(19):5076-5083.
[5] LITTER M I. Photodissolution of iron oxides:I. Maghemite in EDTA solutions[J]. Journal of Colloid and Interface Science,1988,125(2):679-687.
[6] VILLACIS-GARCIA M, UGALDE-ARZATE M, VACA-ESCOBAR K, et al. Laboratory synthesis of goethite and ferrihydrite of controlled particle sizes[J]. Boletín de la Sociedad Geológica Mexicana,2015,67(3):433-446.
[7] TAMURA H, GOTO K, YOTSUYANAGI T, et al. Spectrophotometric determination of iron(II)with 1,10-phenanthroline in the presence of large amounts of iron(III)[J]. Talanta,1974,21(4):314-318.
[8] KOSMULSKI M. pH-dependent surface charging and points of zero charge. IV. Update and new approach[J]. Journal of Colloid and Interface Science,2009,337(2):439-448.
[9] ANTELO J, AVENA M, FIOL S, et al. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite-water interface[J]. Journal of Colloid and Interface Science,2005,285(2):476-486.
[10] WANG Y J, XU J, ZHAO Y, et al. Photooxidation of arsenite by natural goethite in suspended solution[J]. Environmental Science and Pollution Research,2013,20(1):31-38.
[11] AL-SAYYED G, D'OLIVEIRA J C, PICHAT P. Semiconductor-sensitized photodegradation of 4-chlorophenol in water [J]. Journal of Photochemistry and Photobiology A:Chemistry,1991,58(1):99-11.
[12] LEE H, CHOI W. Photocatalytic oxidation of arsenite in TiO2 suspension:kinetics and mechanisms[J]. Environmental Science and Technology,2002,36(17):3872-3878.
[13] YOON S, LEE J H. Oxidation mechanism of As(III)in the UV/TiO2 system:evidence for a direct hole oxidation mechanism[J]. Environmental Science and Technology,2005,39(24):9695-9701.
[14] 李欣,王铁成,屈广周,等. 碳纳米管/钒酸铋光催化降解盐酸四环素[J]. 环境工程学报,2017,11(5):2738-2742.
[15] HALLIWELL B, GUTTERIDGE J M C. ARUOMA O I. The deoxyribose method:a simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals[J]. Analytical Biochemistry,1987,165(1):215-219.
[16] ZHANG X, WU F, DENG N S, et al. Evidence of the hydroxyl radical formation upon the photolysis of an iron-rich clay in aqueous solution[J]. Reaction Kinetics and Catalysis Letters,2008,94(2):207-218.
[17] WANG Y J, XU J, LI J J, et al. Natural montmorillonite induced photooxidation of As(III)in aqueous suspensions:roles and sources of hydroxyl and hydroperoxyl/superoxide radicals[J]. Journal of Hazardous Materials,2013,260:255-262.
[18] BIELSKI B H J, CABELLI D E, ARUDI R L, et al. Reactivity of HO2/O-2 radicals in aqueous solution[J]. Journal of Physical Chemistry Reference Data,1985,14(4):1041-1053.
[19] DENG Y X, LI Y T, LI X J, et al. Influence of calcium and phosphate on pH dependency of arsenite and arsenate adsorption to goethite[J]. Chemosphere,2018,199:617-624.

备注/Memo

备注/Memo:
收稿日期:2018-11-24 接受日期:2019-03-08
基金项目:国家自然科学基金(21667011)、贵州省科技计划项目(黔科合基础[2018]1078)和贵州省科技厅与贵州民族大学联合基金(黔科合LH字[2015]7225)
第一作者简介:王雅洁(1982—),女,副教授,主要从事环境光化学、高级氧化技术的研究,E-mail:yajiewang@gzmu.edu.cn
更新日期/Last Update: 2020-06-20